

Introduction to Mathematical Quantum Theory

Solution to the Exercises

– 05.05.2020 –

Teacher: Prof. Chiara Saffirio

Assistent: Dr. Daniele Dimonte – daniele.dimonte@unibas.ch

Exercise 1

Let $k \in \mathbb{Z}$, $d \in \mathbb{N}$, $k + d \neq 0$. Let D be defined as

$$D := \begin{cases} C_c^\infty(\mathbb{R}^d) & \text{if } k \geq 0, \\ C_c^\infty(\mathbb{R}^d \setminus \{\mathbf{0}\}) & \text{if } k \leq -1, \ k + d \neq 0. \end{cases} \quad (1)$$

Prove that for any $\psi \in D$

$$\int_{\mathbb{R}^d} |\mathbf{x}|^k |\psi(\mathbf{x})|^2 d\mathbf{x} \leq \frac{4}{|k+d|^2} \int_{\mathbb{R}^d} |\mathbf{x}|^{k+2} |\nabla \psi(\mathbf{x})|^2 d\mathbf{x}. \quad (2)$$

Hint: Use the fact that

$$|\mathbf{x}|^k = \frac{1}{k+d} \sum_{j=1}^d \frac{\partial}{\partial x_j} (|\mathbf{x}|^k x_j) \quad (3)$$

to integrate by part on the left hand side of (2) and then use the Cauchy-Schwartz inequality.

Remark: Notice that in particular if $k = -2$ (and $d \neq 2$) this implies that as operators

$$\frac{1}{|\mathbf{x}|^2} \leq -\frac{4}{|d-2|} \Delta. \quad (4)$$

A generalisation of this formula is called in the literature the **Hardy inequality**.

Proof. We will use the shorthand notation of div for a divergence of a vector field, meaning that if \mathbf{F} is a vector field on \mathbb{R}^d , we define

$$\operatorname{div} \mathbf{F}(\mathbf{x}) := \sum_{j=1}^d \frac{\partial}{\partial x_j} F_j(\mathbf{x}).$$

With this notation in mind we have that the Green theorem can be written as

$$\int_{\mathbb{R}^d} \operatorname{div} F(\mathbf{x}) g(\mathbf{x}) d\mathbf{x} = - \int_{\mathbb{R}^d} F \cdot \nabla g(\mathbf{x}) d\mathbf{x},$$

and we can write $|\mathbf{x}|^k = (k+d)^{-1} \operatorname{div} (|\mathbf{x}|^k \mathbf{x})$.

Let $\psi \in D$ and consider the left-hand side of (2); we get

$$\begin{aligned}
\int_{\mathbb{R}^d} |\mathbf{x}|^k |\psi(\mathbf{x})|^2 d\mathbf{x} &= \frac{1}{k+d} \int_{\mathbb{R}^d} \operatorname{div}(|\mathbf{x}|^k x) |\psi(\mathbf{x})|^2 d\mathbf{x} \\
&= -\frac{1}{k+d} \int_{\mathbb{R}^d} |\mathbf{x}|^k x \cdot \nabla (|\psi(\mathbf{x})|^2) d\mathbf{x} \\
&= -\frac{2}{k+d} \int_{\mathbb{R}^d} |\mathbf{x}|^k x \cdot \operatorname{Re}(\overline{\psi(\mathbf{x})} \nabla \psi(\mathbf{x})) d\mathbf{x} \\
&\leq \frac{2}{|k+d|} \int_{\mathbb{R}^d} |\mathbf{x}|^{k+1} |\psi(\mathbf{x})| |\nabla \psi(\mathbf{x})| d\mathbf{x} \\
&\leq \frac{2}{|k+d|} \left(\int_{\mathbb{R}^d} |\mathbf{x}|^{2(k+1-\eta)} |\psi(\mathbf{x})|^2 d\mathbf{x} \right)^{\frac{1}{2}} \left(\int_{\mathbb{R}^d} |\mathbf{x}|^{2\eta} |\nabla \psi(\mathbf{x})| d\mathbf{x} \right)^{\frac{1}{2}}.
\end{aligned}$$

If we choose $\eta = \frac{k+2}{2}$ we get

$$\int_{\mathbb{R}^d} |\mathbf{x}|^k |\psi(\mathbf{x})|^2 d\mathbf{x} \leq \frac{4}{|k+d|^2} \int_{\mathbb{R}^d} |\mathbf{x}|^{k+2} |\nabla \psi(\mathbf{x})| d\mathbf{x}.$$

□

Exercise 2

a Let $\mathcal{H} := L^2(\mathbb{R}^3)$. Define (as in class) the operator H_0 with¹

$$\mathcal{D}(H_0) := H^2(\mathbb{R}^3) \equiv \left\{ \psi \in \mathcal{H} \mid |\mathbf{k}|^2 \hat{\psi}(\mathbf{k}) \in L^2(\mathbb{R}^3) \right\}, \quad (5)$$

$$H_0 \psi = -\Delta \psi = \left(|\mathbf{k}|^2 \hat{\psi}(\mathbf{k}) \right)^\vee, \quad \forall \psi \in \mathcal{D}(H_0). \quad (6)$$

Prove that H_0 is closed.

b Let $\mathcal{D}(H) := \mathcal{D}(H_0)$. Define $H := H_0 + \frac{1}{|\mathbf{x}|}$. Prove that H is well-defined and closed. (Assume, if necessary, to know that there exists a positive constant C such that for any $\psi \in H^2(\mathbb{R}^3)$ it holds $\|\psi\|_{L^\infty} \leq C \|\psi\|_{H^2}$).

Hint: Use the fact that $H^2(\mathbb{R}^3) \subseteq L^\infty(\mathbb{R}^3)$ to prove that is well-defined. To prove the closure, use (2) from Exercise 1 to show and subsequently use that $\forall \varepsilon > 0$, $\forall \psi \in \mathcal{D}(H)$

$$\left\| \frac{1}{|\mathbf{x}|} \psi \right\|_{L^2} \leq \frac{2}{\varepsilon} \|\psi\|_{L^2} + \varepsilon \|H_0 \psi\|_{L^2} \quad (7)$$

to get that

$$\|H_0 \psi\|_{L^2} \leq \frac{2}{\varepsilon(1-\varepsilon)} \|\psi\|_{L^2} + \frac{1}{1-\varepsilon} \|H \psi\|_{L^2}. \quad (8)$$

c Prove that H is symmetric.

¹Recall that we proved in the exercise session that if $\|\psi\|_{H^2} := \left\| (1 + |\mathbf{k}|^2) \hat{\psi} \right\|_{L^2}$, then $H^2(\mathbb{R}^3)$ is closed with respect to $\|\cdot\|_{H^2}$.

d Prove that H is self-adjoint.

Hint: Use the fact that $\frac{1}{|x|}$ is a self-adjoint operator and apply the Kato-Rellich theorem.

Proof. Recall that we proved in the exercise session that $H^2(\mathbb{R}^3)$ is closed with respect to $\|\cdot\|_{H^2}$. To prove **a**, then, consider a sequence $\{\psi_n\}_{n \in \mathbb{N}} \subseteq \mathcal{D}(H_0)$ such that $\psi_n \rightarrow \psi$ and $H_0\psi_n \rightarrow \phi$ in \mathcal{H} . As a consequence we get that $\{\psi_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence with respect to $\|\cdot\|_{H^2}$ and therefore $\psi \in H^2(\mathbb{R}^3) = \mathcal{D}(H_0)$ and $H_0\psi = \phi$, and hence H_0 is closed.

To prove **b** we first prove that H is well defined. Given that $\psi \in H^2(\mathbb{R}^3) \subseteq L^\infty(\mathbb{R}^3)$, we get that

$$\begin{aligned} \left\| \frac{1}{|\mathbf{x}|} \psi \right\|_{L^2}^2 &= \int_{\mathbb{R}^3} \frac{1}{|\mathbf{x}|^2} |\psi(\mathbf{x})|^2 d\mathbf{x} \leq \|\psi\|_{L^\infty} \int_{B_1(\mathbf{0})} \frac{1}{|\mathbf{x}|^2} d\mathbf{x} + \int_{\mathbb{R}^3 \setminus B_1(\mathbf{0})} |\psi(\mathbf{x})|^2 d\mathbf{x} \\ &\leq 4\pi \|\psi\|_{L^\infty} + \|\psi\|_{L^2} \leq (4\pi C + 1) \|\psi\|_{H^2}. \end{aligned}$$

We then use Hardy inequality and the fact that for any $\eta > 0$ we have $|\mathbf{k}|^2 \leq 1/\eta + \eta/4|\mathbf{k}|^4$, to obtain for any $\psi \in C_c^\infty(\mathbb{R}^3 \setminus \{\mathbf{0}\})$ that

$$\begin{aligned} \left\| \frac{1}{|\mathbf{x}|} \psi \right\|_{L^2}^2 &\leq 4 \|\nabla \psi\|_{L^2}^2 = 4 \int_{\mathbb{R}^3} |\mathbf{k}|^2 |\hat{\psi}(\mathbf{k})|^2 d\mathbf{x} \leq \frac{4}{\eta} \|\psi\|_{L^2}^2 + \eta \|H_0\psi\|_{L^2}^2 \\ &\leq \left(\frac{2}{\sqrt{\eta}} \|\psi\|_{L^2} + \sqrt{\eta} \|H_0\psi\|_{L^2} \right)^2. \end{aligned}$$

Calling $\eta = \varepsilon^2$ we obtain (7). As a consequence we get for any $\psi \in C_c^\infty(\mathbb{R}^3 \setminus \{\mathbf{0}\})$

$$\|H_0\psi\|_{L^2} \leq \|H\psi\|_{L^2} + \left\| \frac{1}{|\mathbf{x}|} \psi \right\|_{L^2} \leq \|H\psi\|_{L^2} + \frac{2}{\varepsilon} \|\psi\|_{L^2} + \varepsilon \|H_0\psi\|_{L^2}.$$

Choosing $\varepsilon < 1$ and collecting the identical terms on the left we obtain (8).

Suppose $\{\psi_n\}_{n \in \mathbb{N}} \subseteq \mathcal{D}(H)$ and that $\psi_n \rightarrow \psi$ and $H\psi_n \rightarrow \phi$ in \mathcal{H} ; then the sequences $\{\psi_n\}_{n \in \mathbb{N}}$ and $\{H\psi_n\}_{n \in \mathbb{N}}$ are Cauchy sequences and using (8) we get that also $\{H_0\psi_n\}_{n \in \mathbb{N}}$ is. From **a** we then get that $\psi \in \mathcal{D}(H_0) = \mathcal{D}(H)$ and that $H_0\psi_n \rightarrow H_0\psi$. Moreover we get that

$$\begin{aligned} \lim_{n \rightarrow +\infty} \left\| \frac{1}{|\mathbf{x}|} (\psi_n - \psi) \right\|_{L^2} &\leq \lim_{n \rightarrow +\infty} (4\pi C + 1) \|\psi_n - \psi\|_{H^2} \\ &= \lim_{n \rightarrow +\infty} (4\pi C + 1) \sqrt{\|\psi_n - \psi\|_{L^2}^2 + \|H_0(\psi_n - \psi)\|_{L^2}^2} = 0, \end{aligned}$$

and as a consequence $H\psi_n \rightarrow H\psi$, so H is closed.

To prove **c**, consider $\psi, \varphi \in \mathcal{D}(H) = H^2(\mathbb{R}^3)$; then we get

$$\langle \psi, H^* \varphi \rangle = \langle H\psi, \varphi \rangle = \langle -\Delta\psi, \varphi \rangle + \langle \frac{1}{|\mathbf{x}|} \psi, \varphi \rangle.$$

We already showed in class that $-\Delta$ is symmetric, so we get that

$$\langle \psi, H^* \varphi \rangle = \langle \psi, -\Delta\varphi \rangle + \langle \psi, \frac{1}{|\mathbf{x}|} \varphi \rangle = \langle \psi, H\varphi \rangle,$$

and therefore H is symmetric.

To prove **d** notice that if we define the operator V as the operator given by

$$\begin{aligned}\mathcal{D}(V) &:= \left\{ \psi \in \mathcal{H} \mid \frac{1}{|x|} \psi(x) \in \mathcal{H} \right\} \\ V\psi(x) &:= \frac{1}{|x|} \psi(x),\end{aligned}$$

this is a well defined self-adjoint operator. Indeed it is trivially symmetric, and therefore V^* is an extension of V . Furthermore, let ψ in $\mathcal{D}(V^*)$ and consider $\phi \in \mathcal{S}(\mathbb{R}^3)$ the space of Schwartz functions. In particular $\phi \in \mathcal{D}(V)$, and we get

$$|\langle \psi, V\phi \rangle| \leq C_\psi \|\phi\|_{L^2}.$$

As a consequence, using Riesz theorem, there exists an element $\xi \in L^2(\mathbb{R}^3)$ such that $\langle \xi, \phi \rangle = \langle \psi, V\phi \rangle$ for any $\phi \in \mathcal{S}(\mathbb{R}^3)$. This in particular implies that $V\psi = \xi$ almost everywhere, and therefore $V\psi \in L^2(\mathbb{R}^3)$. By the definition of the domain of V we get $\psi \in \mathcal{D}(V)$ and V is self-adjoint.

Now, choosing $\varepsilon < 1$ we can use (7) to first get that $\mathcal{D}(H_0) \subseteq \mathcal{D}(V)$. We are then in the hypothesis of the Kato-Rellich theorem, and we can conclude that $H = H_0 + V$ is self-adjoint.

□

Exercise 3

Let \mathcal{H} an Hilbert space and let $A, B \in \mathcal{B}(\mathcal{H})$, $A^* = A$, $B^* = B$

- a** Suppose² $A \geq \text{id}$; prove that A is invertible with $A^{-1} \in \mathcal{B}(\mathcal{H})$ and that $0 \leq A^{-1} \leq \text{id}$.
- b** Suppose $0 \leq A \leq B$; prove that for any $\lambda > 0$, $A + \lambda \text{id}$ and $B + \lambda \text{id}$ are invertible with $(A + \lambda \text{id})^{-1}, (B + \lambda \text{id})^{-1} \in \mathcal{B}(\mathcal{H})$ and that we have $(B + \lambda \text{id})^{-1} \leq (A + \lambda \text{id})^{-1}$.
- c** Suppose $0 \leq A \leq B$; prove that $\sqrt{A} \leq \sqrt{B}$.

Hint: Prove and use the fact that

$$\sqrt{x} = \frac{1}{\pi} \int_0^{+\infty} \frac{1}{\sqrt{\lambda}} \left(1 - \frac{\lambda}{x + \lambda} \right) d\lambda, \quad \forall x \geq 0. \quad (9)$$

Proof. To prove **a** we first notice that $A \geq \text{id}$ implies that $\sigma(A) \subseteq [1, +\infty)$, and therefore $0 \notin \sigma(A)$. By definition of spectrum this implies that $A^{-1} \in \mathcal{B}(\mathcal{H})$. Using functional calculus, if μ is the spectral measure associated to A , for any $\psi \in \mathcal{H}$ we get

$$\langle \psi, A^{-1}\psi \rangle = \langle \psi, \int_{\sigma(A)} \frac{1}{\lambda} d\mu(\lambda) \psi \rangle \leq \sup_{\lambda \in \sigma(A)} \frac{1}{\lambda} \langle \psi, \int_{\sigma(A)} d\mu(\lambda) \psi \rangle \leq \|\psi\|^2.$$

²Recall that $A \geq 0$ if for any $\psi \in \mathcal{D}(A)$, $\langle \psi, A\psi \rangle \geq 0$ and that $A \geq B$ if $A - B \geq 0$.

Proceeding analogously we also get

$$\langle \psi, A^{-1}\psi \rangle = \langle \psi, \int_{\sigma(A)} \frac{1}{\lambda} d\mu(\lambda) \psi \rangle \geq \inf_{\lambda \in \sigma(A)} \frac{1}{\lambda} \langle \psi, \int_{\sigma(A)} d\mu(\lambda) \psi \rangle \geq 0.$$

Those chains of inequalities imply that $0 \leq A^{-1} \leq \text{id}$.

To prove **b** consider $\lambda > 0$; given that $\lambda > 0$, we have

$$B + \lambda \text{id} \geq A + \lambda \text{id} \Rightarrow (A + \lambda \text{id})^{-\frac{1}{2}} (B + \lambda \text{id}) (A + \lambda \text{id})^{-\frac{1}{2}} \geq \text{id},$$

where we used the fact that $A + \lambda \text{id} \geq \lambda \text{id}$ and that $(\cdot)^{-\frac{1}{2}}$ is continuous and bounded on $[\lambda, +\infty)$ to define $(A + \lambda \text{id})^{-\frac{1}{2}}$.

Using **a** we then get that

$$\begin{aligned} \text{id} &\geq \left[(A + \lambda \text{id})^{-\frac{1}{2}} (B + \lambda \text{id}) (A + \lambda \text{id})^{-\frac{1}{2}} \right]^{-1} \\ &= (A + \lambda \text{id})^{\frac{1}{2}} (B + \lambda \text{id})^{-1} (A + \lambda \text{id})^{\frac{1}{2}}. \end{aligned}$$

Multiplying both sides from left and right by $(A + \lambda \text{id})^{-\frac{1}{2}}$ we can conclude.

To prove **c**, we first prove (9); we get

$$\begin{aligned} \int_0^{+\infty} \frac{1}{\sqrt{\lambda}} \left(1 - \frac{\lambda}{x + \lambda} \right) d\lambda &= \int_0^{+\infty} \frac{x}{\sqrt{\lambda}(x + \lambda)} d\lambda = \sqrt{x} \int_0^{+\infty} \frac{1}{\sqrt{\lambda}(1 + \lambda)} d\lambda \\ &= \sqrt{x} \left[2 \arctan \sqrt{\lambda} \right]_0^{+\infty} = \pi \sqrt{x}. \end{aligned}$$

As a consequence we can write for any $\psi \in \mathcal{H}$

$$\langle \psi, \sqrt{A}\psi \rangle = \langle \psi, \int_{\sigma(A)} \sqrt{\lambda} d\mu(\lambda) \psi \rangle = \langle \psi, \int_{\sigma(A)} \frac{1}{\pi} \int_0^{+\infty} \frac{1}{\sqrt{t}} \left(1 - \frac{t}{t + \lambda} \right) dt d\mu(\lambda) \psi \rangle.$$

Now, given that $\frac{1}{\sqrt{t}} \left(1 - \frac{t}{t + \lambda} \right) \leq \frac{1}{\sqrt{t}} \left(1 - \frac{t}{t + \|A\|} \right) = \frac{\|A\|}{\sqrt{t}(t + \|A\|)}$ is integrable in $\sigma(A) \times [0, +\infty)$ with the measure given by the product of the spectral measure of A and the Lebesgue measure, we can exchange the order of the two integrals to get

$$\begin{aligned} \langle \psi, \sqrt{A}\psi \rangle &= \langle \psi, \frac{1}{\pi} \int_0^{+\infty} \int_{\sigma(A)} \frac{1}{\sqrt{t}} \left(1 - \frac{t}{t + \lambda} \right) d\mu(\lambda) dt \psi \rangle \\ &= \langle \psi, \frac{1}{\pi} \int_0^{+\infty} \frac{1}{\sqrt{t}} \left(1 - t(A + t \text{id})^{-1} \right) dt \psi \rangle. \end{aligned}$$

Using now **b** we get that for any $\psi \in \mathcal{H}$

$$\begin{aligned} \langle \psi, \sqrt{A}\psi \rangle &= \langle \psi, \frac{1}{\pi} \int_0^{+\infty} \frac{1}{\sqrt{t}} \left(1 - t(A + t \text{id})^{-1} \right) dt \psi \rangle \\ &\leq \langle \psi, \frac{1}{\pi} \int_0^{+\infty} \frac{1}{\sqrt{t}} \left(1 - t(B + t \text{id})^{-1} \right) dt \psi \rangle = \langle \psi, \sqrt{B}\psi \rangle, \end{aligned}$$

which allows us to conclude. \square

Exercise 4

Let \mathcal{H} be an Hilbert space. Let A be a linear self-adjoint operator on \mathcal{H} with $A \geq 0$ and $\lambda > 0$. Denote with $\|\cdot\|$ the operator norm and with $\|\cdot\|_{\mathcal{H}}$ the norm induced by the inner product in the Hilbert space \mathcal{H} .

a Prove that $\|(A + \lambda \text{id})^{-1}\| \leq 1/\lambda$.

b Prove that for all $\psi \in \mathcal{H}$,

$$\|\psi\|_{\mathcal{H}}^2 \geq \|A(A + \lambda \text{id})^{-1}\psi\|_{\mathcal{H}}^2 + \lambda^2 \|(A + \lambda \text{id})^{-1}\psi\|_{\mathcal{H}}^2. \quad (10)$$

Conclude that $\|A(A + \lambda \text{id})^{-1}\| \leq 1$.

Proof. To prove **a** recall that we proved in class that if T is a self-adjoint operator and f is a continuous and bounded function we have $\|f(T)\| \leq \sup_{\zeta \in \sigma(T)} |f(\zeta)|$. Moreover, we also saw that if $A \geq 0$ then $\sigma(A) \subseteq [0, +\infty)$. As a consequence we get

$$\|(A + \lambda \text{id})^{-1}\| \leq \sup_{\zeta \in \sigma(A)} \frac{1}{|\zeta + \lambda|} \leq \sup_{\zeta \in [0, +\infty)} \frac{1}{\zeta + \lambda} \leq \frac{1}{\lambda}.$$

To prove **b** we get that for any $\psi \in \mathcal{H}$

$$\langle \psi, (A + \lambda \text{id})^{-1} A(A + \lambda \text{id})^{-1} \psi \rangle = \langle (A + \lambda \text{id})^{-1} \psi, A(A + \lambda \text{id})^{-1} \psi \rangle \geq 0.$$

As a consequence we get that

$$\begin{aligned} & \|A(A + \lambda \text{id})^{-1}\psi\|_{\mathcal{H}}^2 + \lambda^2 \|(A + \lambda \text{id})^{-1}\psi\|_{\mathcal{H}}^2 = \\ &= \langle \psi, (A + \lambda \text{id})^{-1}(A^2 + \lambda^2)(A + \lambda \text{id})^{-1}\psi \rangle \\ &\leq \langle \psi, (A + \lambda \text{id})^{-1}(A^2 + 2\lambda A + \lambda^2)(A + \lambda \text{id})^{-1}\psi \rangle = \|\psi\|_{\mathcal{H}}^2. \end{aligned}$$

As a consequence we then get $\|A(A + \lambda \text{id})^{-1}\psi\|_{\mathcal{H}} \leq \|\psi\|_{\mathcal{H}}$ which allows us to conclude that $\|A(A + \lambda \text{id})^{-1}\| \leq 1$.

□