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Exercise 1

Let k P Z, d P N, k ` d ‰ 0. Let D be defined as

D :“

"

C8c
`

Rd
˘

if k ě 0,
C8c

`

Rdz t0u
˘

if k ď ´1, k ` d ‰ 0.
(1)

Prove that for any ψ P D

ż

Rd

|x|k |ψ pxq|2 dx ď
4

|k ` d|2

ż

Rd

|x|k`2 |∇ψ pxq|2 dx. (2)

Hint: Use the fact that

|x|k “
1

k ` d

d
ÿ

j“1

B

Bxj

´

|x|k xj

¯

(3)

to integrate by part on the left hand side of (2) and then use the Cauchy-Schwartz in-
equality.

Remark: Notice that in particular if k “ ´2 (and d ‰ 2) this implies that as operators

1

|x|2
ď ´

4

|d´ 2|
∆. (4)

A generalisation of this formula is called in the literature the Hardy inequality.

Proof. We will use the shorthand notation of div for a divergence of a vector field, meaning
that if F is a vector field on Rd, we define

divF pxq :“
d
ÿ

j“1

B

Bxj
Fj pxq .

With this notation in mind we have that the Green theorem can be written as
ż

Rd

divF pxq g pxq dx “ ´

ż

Rd

F ¨∇g pxq dx,

and we can write |x|k “ pk ` dq´1 div
´

|x|k x
¯

.
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Let ψ P D and consider the left-hand side of (2); we get

ż

Rd

|x|k |ψ pxq|2 dx “
1

k ` d

ż

Rd

div
´

|x|k x
¯

|ψ pxq|2 dx

“ ´
1

k ` d

ż

Rd

|x|k x ¨∇
´

|ψ pxq|2
¯

dx

“ ´
2

k ` d

ż

Rd

|x|k x ¨ Re
´

ψ pxq∇ψ pxq
¯

dx

ď
2

|k ` d|

ż

Rd

|x|k`1 |ψ pxq| |∇ψ pxq| dx

ď
2

|k ` d|

ˆ
ż

Rd

|x|2pk`1´ηq |ψ pxq|2 dx

˙
1
2
ˆ
ż

Rd

|x|2η |∇ψ pxq| dx
˙

1
2

.

If we choose η “ k`2
2 we get

ż

Rd

|x|k |ψ pxq|2 dx ď
4

|k ` d|2

ż

Rd

|x|k`2 |∇ψ pxq| dx.

Exercise 2

a Let H :“ L2
`

R3
˘

. Define (as in class) the operator H0 with1

D pH0q :“ H2
`

R3
˘

”

!

ψ P H| |k|2 pψ pkq P L2
`

R3
˘

)

, (5)

H0ψ “ ´∆ψ “
´

|k|2 pψ pkq
¯_

, @ψ P D pH0q . (6)

Prove that H0 is closed.

b Let D pHq :“ D pH0q. Define H :“ H0`
1
|x| . Prove that H is well-defined and closed.

(Assume, if necessary, to know that there exists a positive constant C such that for
any ψ P H2

`

R3
˘

it holds }ψ}L8 ď C }ψ}H2).

Hint: Use the fact that H2
`

R3
˘

Ď L8
`

R3
˘

to prove that is well-defined. To prove
the closure, use (2) from Exercise 1 to show and subsequently use that @ε ą 0,
@ψ P D pHq

›

›

›

›

1

|x|
ψ

›

›

›

›

L2

ď
2

ε
}ψ}L2 ` ε }H0ψ}L2 (7)

to get that

}H0ψ}L2 ď
2

ε p1´ εq
}ψ}L2 `

1

1´ ε
}Hψ}L2 . (8)

c Prove that H is symmetric.

1Recall that we proved in the exercise session that if }ψ}H2 :“
›

›

›

`

1` |k|2
˘

pψ
›

›

›

L2
, then H2

`

R3
˘

is closed

with respect to }¨}H2 .
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d Prove that H is self-adjoint.

Hint: Use the fact that 1
|x| is a self-adjoint operator and apply the Kato-Rellich

theorem.

Proof. Recall that we proved in the exercise session that H2
`

R3
˘

is closed with respect
to }¨}H2 . To prove a, then, consider a sequence tψnunPN Ď D pH0q such that ψn Ñ ψ and
H0ψn Ñ φ in H. As a consequence we get that tψnunPN is a Cauchy sequence with respect
to }¨}H2 and therefore ψ P H2

`

R3
˘

“ D pH0q and H0ψ “ ϕ, and hence H0 is closed.

To prove b we first prove that H is well defined. Given that ψ P H2
`

R3
˘

Ď L8
`

R3
˘

, we
get that

›

›

›

›

1

|x|
ψ

›

›

›

›

2

L2

“

ż

R3

1

|x|2
|ψ pxq|2 dx ď }ψ}L8

ż

B1p0q

1

|x|2
dx`

ż

R3zB1p0q
|ψ pxq|2 dx

ď 4π }ψ}L8 ` }ψ}L2 ď p4πC ` 1q }ψ}H2 .

We then use Hardy inequality and the fact that for any η ą 0 we have |k|2 ď 1{η`η{4 |k|4,
to obtain for any ψ P C8c

`

R3zt0u
˘

that

›

›

›

›

1

|x|
ψ

›

›

›

›

2

L2

ď 4 }∇ψ}2L2 “ 4

ż

R3

|k|2
ˇ

ˇ

ˇ

pψ pkq
ˇ

ˇ

ˇ

2
dx ď

4

η
}ψ}2L2 ` η }H0ψ}

2
L2

ď

ˆ

2
?
η
}ψ}L2 `

?
η }H0ψ}L2

˙2

.

Calling η “ ε2 we obtain (7). As a consequence we get for any ψ P C8c
`

R3zt0u
˘

}H0ψ}L2 ď }Hψ}L2 `

›

›

›

›

1

|x|
ψ

›

›

›

›

L2

ď }Hψ}L2 `
2

ε
}ψ}L2 ` ε }H0}L2 .

Choosing ε ă 1 and collecting the identical terms on the left we obtain (8).

Suppose tψnunPN Ď D pHq and that ψn Ñ ψ and Hψn Ñ ϕ in H; then the sequences
tψnunPN and tHψNunPN are Cauchy sequences and using (8) we get that also tH0ψnunPN
is. From a we then get that ψ P D pH0q “ D pHq and that H0ψn Ñ H0ψ. Moreover we
get that

lim
nÑ`8

›

›

›

›

1

|x|
pψn ´ ψq

›

›

›

›

L2

ď lim
nÑ`8

p4πC ` 1q }ψn ´ ψ}H2

“ lim
nÑ`8

p4πC ` 1q

b

}ψn ´ ψ}
2
L2 ` }H0 pψn ´ ψq}

2
L2 “ 0,

and as a consequence Hψn Ñ Hψ, so H is closed.

To prove c, consider ψ, ϕ P D pHq “ H2
`

R3
˘

; then we get

xψ,H˚ϕy “ xHψ,ϕy “ x´∆ψ,ϕy ` x
1

|x|
ψ,ϕy.

We already showed in class that ´∆ is symmetric, so we get that

xψ,H˚ϕy “ xψ,´∆ϕy ` xψ,
1

|x|
ϕy “ xψ,Hϕy,
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and therefore H is symmetric.

To prove d notice that if we define the operator V as the operator given by

D pV q :“

"

ψ P H| 1

|x|
ψ pxq P H

*

V ψ pxq :“
1

|x|
ψ pxq ,

this is a well defined self-adjoint operator. Indeed it is trivially symmetric, and therefore
V ˚ is an extension of V . Furthermore, let ψ in D pV ˚q and consider φ P S

`

R3
˘

the space
of Schwartz functions. In particular φ P D pV q, and we get

|xψ, V φy| ď Cψ }φ}L2 .

As a consequence, using Riesz theorem, there exists an element ξ P L2
`

R3
˘

such that
xξ, φy “ xψ, V φy for any φ P S

`

R3
˘

. This in particular implies that V ψ “ ξ almost
everywhere, and therefore V ψ P L2

`

R3
˘

. By the definition of the domain of V we get
ψ P D pV q and V is self-adjoint.

Now, choosing ε ă 1 we can use (7) to first get that D pH0q Ď D pV q. We are then in
the hypothesis of the Kato-Rellich theorem, and we can conclude that H “ H0 ` V is
self-adjoint.

Exercise 3

Let H an Hilbert space and let A, B P B pHq, A˚ “ A, B˚ “ B

a Suppose2 A ě id; prove that A is invertible with A´1 P B pHq and that 0 ď A´1 ď id.

b Suppose 0 ď A ď B; prove that for any λ ą 0, A`λ id andB`λ id are invertible with
pA` λ idq´1 , pB ` λ idq´1 P B pHq and that we have pB ` λ idq´1 ď pA` λ idq´1.

c Suppose 0 ď A ď B; prove that
?
A ď

?
B.

Hint: Prove and use the fact that

?
x “

1

π

ż `8

0

1
?
λ

ˆ

1´
λ

x` λ

˙

dλ, @x ě 0. (9)

Proof. To prove a we first notice that A ě id implies that σ pAq Ď r1,`8q, and therefore
0 R σ pAq. By definition of spectrum this implies that A´1 P B pHq. Using functional
calculus, if µ is the spectral measure associated to A, for any ψ P H we get

xψ,A´1ψy “ xψ,

ż

σpAq

1

λ
dµ pλqψy ď sup

λPσpAq

1

λ
xψ,

ż

σpAq
dµ pλqψy ď }ψ}2 .

2Recall that A ě 0 if for any ψ P D pAq, xψ,Aψy ě 0 and that A ě B if A´B ě 0.
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Proceeding analogously we also get

xψ,A´1ψy “ xψ,

ż

σpAq

1

λ
dµ pλqψy ě inf

λPσpAq

1

λ
xψ,

ż

σpAq
dµ pλqψy ě 0.

Those chains of inequalities imply that 0 ď A´1 ď id.

To prove b consider λ ą 0; given that λ ą 0, we have

B ` λ id ě A` λ id ñ pA` λ idq´
1
2 pB ` λ idq pA` λ idq´

1
2 ě id,

where we used the fact that A` λ id ě λ id and that p¨q´
1
2 is continuous and bounded on

rλ,`8q to define pA` λ idq´
1
2 .

Using a we then get that

id ě
”

pA` λ idq´
1
2 pB ` λ idq pA` λ idq´

1
2

ı´1

“ pA` λ idq
1
2 pB ` λ idq´1 pA` λ idq

1
2 .

Multiplying both sides from left and right by pA` λ idq´
1
2 we can conclude.

To prove c, we first prove (9); we get
ż `8

0

1
?
λ

ˆ

1´
λ

x` λ

˙

dλ “

ż `8

0

x
?
λ px` λq

dλ “
?
x

ż `8

0

1
?
λ p1` λq

dλ

“
?
x
”

2 arctan
?
λ
ı`8

0
“ π

?
x.

As a consequence we can write for any ψ P H

xψ,
?
Aψy “ xψ,

ż

σpAq

?
λdµ pλqψy “ xψ,

ż

σpAq

1

π

ż `8

0

1
?
t

ˆ

1´
t

t` λ

˙

dtdµ pλqψy.

Now, given that 1?
t

´

1´ t
t`λ

¯

ď 1?
t

´

1´ t
t`}A}

¯

“
}A}

?
tpt`}A}q

is integrable in σ pAq ˆ

r0,`8q with the measure given by the product of the spectral measure of A and the
Lebesgue measure, we can exchange the order of the two integrals to get

xψ,
?
Aψy “ xψ,

1

π

ż `8

0

ż

σpAq

1
?
t

ˆ

1´
t

t` λ

˙

dµ pλq dtψy

“ xψ,
1

π

ż `8

0

1
?
t

´

1´ t pA` t idq´1
¯

dtψy.

Using now b we get that for any ψ P H

xψ,
?
Aψy “ xψ,

1

π

ż `8

0

1
?
t

´

1´ t pA` t idq´1
¯

dtψy

ď xψ,
1

π

ż `8

0

1
?
t

´

1´ t pB ` t idq´1
¯

dtψy “ xψ,
?
Bψy,

which allows us to conclude.
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Exercise 4

Let H be an Hilbert space. Let A be a linear self-adjoint operator on H with A ě 0 and
λ ą 0. Denote with }¨} the operator norm and with }¨}H the norm induced by the inner
product in the Hilbert space H.

a Prove that
›

›

›
pA` λ idq´1

›

›

›
ď 1{λ.

b Prove that for all ψ P H,

}ψ}2H ě
›

›

›
A pA` λ idq´1 ψ

›

›

›

2

H
` λ2

›

›

›
pA` λ idq´1 ψ

›

›

›

2

H
. (10)

Conclude that
›

›

›
A pA` λ idq´1

›

›

›
ď 1.

Proof. To prove a recall that we proved in class that if T is a self-adjoint operator and f
is a continuous and bounded function we have }f pT q} ď supζPσpT q |f pζq|. Moreover, we
also saw that if A ě 0 then σ pAq Ď r0,`8q. As a consequence we get

›

›

›
pA` λ idq´1

›

›

›
ď sup

ζPσpAq

1

|ζ ` λ|
ď sup

ζPr0,`8q

1

ζ ` λ
ď

1

λ
.

To prove b we get that for any ψ P H

xψ, pA` λ idq´1A pA` λ idq´1 ψy “ xpA` λ idq´1 ψ,A pA` λ idq´1 ψy ě 0.

As a consequence we get that

›

›

›
A pA` λ idq´1 ψ

›

›

›

2

H
` λ2

›

›

›
pA` λ idq´1 ψ

›

›

›

2

H
“

“ xψ, pA` λ idq´1
`

A2 ` λ2
˘

pA` λ idq´1 ψy

ď xψ, pA` λ idq´1
`

A2 ` 2λA` λ2
˘

pA` λ idq´1 ψy “ }ψ}2H .

As a consequence we then get
›

›

›
A pA` λ idq´1 ψ

›

›

›

H
ď }ψ}H which allows us to conclude

that
›

›

›
A pA` λ idq´1

›

›

›
ď 1.
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