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Exercise 1

Let keZ,deN, k+d+# 0. Let D be defined as

d .
CP (RAN{0}) ifk<-1, k+d#+#0.

Prove that for any ¢ € D

4
fRd Il GO dx < |k + d)? JRd X" [V (o) dx. (2)

Hint: Use the fact that
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to integrate by part on the left hand side of (2) and then use the Cauchy-Schwartz in-
equality.
Remark: Notice that in particular if £k = —2 (and d # 2) this implies that as operators
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A generalisation of this formula is called in the literature the Hardy inequality.

Proof. We will use the shorthand notation of div for a divergence of a vector field, meaning
that if F is a vector field on R?, we define

d
divF (x 2266

With this notation in mind we have that the Green theorem can be written as
f divF(x)g(x)dx:—J F - Vg (x)dx,
Rd Rd

and we can write |x|* = (k + d) "' div <\x\kx>



Let 1 € D and consider the left-hand side of (2); we get
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If we choose n = % we get
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Exercise 2
a Let H:=L? (R3). Define (as in class) the operator Hy with!
D (Ho) == H* (R) = {w e H| [k[*¥ (k) € L (R?) }, (5)
How = ~A0 = (kP (K)) Vg eD(Hy).  (6)

Prove that Hj is closed.

b Let D(H) := D (Hy). Define H := Hyp+ ﬁ Prove that H is well-defined and closed.

(Assume, if necessary, to know that there exists a positive constant C' such that for
any o € H2 (R?) it holds [, < C [ 2)-

Hint: Use the fact that H? (RS) c L™ (R3) to prove that is well-defined. To prove
the closure, use (2) from FEzercise 1 to show and subsequently use that Ve > 0,

Ve D (H) 1 2
H,Xﬁ/”p < S Wle + e[ Hov 2 o

to get that

|Hovl < - —
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c Prove that H is symmetric.

'Recall that we proved in the exercise session that if [ ;2 = H (1+ %% 1ZHL2, then H” (R®) is closed

with respect to || ;2.



d Prove that H is self-adjoint.

Hint: Use the fact that ﬁ is a self-adjoint operator and apply the Kato-Rellich
theorem.

Proof. Recall that we proved in the exercise session that H? (R3) is closed with respect
to ||-| 2. To prove a, then, consider a sequence {1}, < D (Hp) such that ¢, — 1 and
HyY, — ¢ in H. As a consequence we get that {1y}, is a Cauchy sequence with respect

to || 2 and therefore ¢ € H? (R?) = D (Hy) and Ho) = ¢, and hence Hy is closed.

To prove b we first prove that H is well defined. Given that 1) € H? (]R3) c L® (]RS), we
get that
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We then use Hardy inequality and the fact that for any 5 > 0 we have |k|* < 1/n+n/4 |k[*,
to obtain for any ¢ € CX (R*\{0}) that
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Calling 1 = €2 we obtain (7). As a consequence we get for any ¢ € C* (R?’\{O})
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Choosing ¢ < 1 and collecting the identical terms on the left we obtain ().

Suppose {¥n},cy S D (H) and that 1, — 9 and Hy, — ¢ in H; then the sequences
{n}, ey and {HYn}, oy are Cauchy sequences and using (8) we get that also {Hotn},,cy
is. From a we then get that ¢ € D (Hp) = D (H) and that Hoy, — Hp. Moreover we
get that

< lim (47C + 1) [1hn — 9] 2
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(47C + 1) /|6 — Y132 + | Ho (6 — |22 = 0,

lim
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and as a consequence H?t,, — H1, so H is closed.

To prove ¢, consider 1, p e D (H) = H? (R3); then we get
1
&, H*p) = (Hy, ) = (~At, ) + <mw, ©).
We already showed in class that —A is symmetric, so we get that
1

|



and therefore H is symmetric.

To prove d notice that if we define the operator V' as the operator given by

D(V) i {1,[)67-[| ’xl‘ib(z)eﬂ}
Vi (2) =|1| (),

this is a well defined self-adjoint operator. Indeed it is trivially symmetric, and therefore
V* is an extension of V. Furthermore, let ¢ in D (V*) and consider ¢ € S (R3) the space
of Schwartz functions. In particular ¢ € D (V'), and we get

K, Vo)l < Cy |4 2 -

As a consequence, using Riesz theorem, there exists an element ¢ € L? (R?’) such that
(&, ¢y = (4, V@) for any ¢ € S(R?). This in particular implies that Vi = £ almost
everywhere, and therefore Vi) € L? (R3). By the definition of the domain of V we get
Y eD (V) and V is self-adjoint.

Now, choosing ¢ < 1 we can use (7) to first get that D (Hp) < D (V). We are then in
the hypothesis of the Kato-Rellich theorem, and we can conclude that H = Hy + V is
self-adjoint.
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Exercise 3
Let ‘H an Hilbert space and let A, Be B(H), A* = A, B* =B

a Suppose? A > id; prove that A is invertible with A= € B(#) and that 0 < A~! <id.

b Suppose 0 < A < B; prove that for any A > 0, A+ \id and B+ \id are invertible with
(A+Xid)™', (B + Aid)™! € B(H) and that we have (B 4+ Aid) ™' < (4 4+ Aid) ™"

¢ Suppose 0 < A < B; prove that /A < v/B.
Hint: Prove and use the fact that

\/5—1J+001<1— A )d/\ vz > 0 ()
_7'(' 0 \/X x‘i‘A ’ -

Proof. To prove a we first notice that A > id implies that o (A) < [1, +00), and therefore
0 ¢ o (A). By definition of spectrum this implies that A~' € B(#). Using functional
calculus, if p is the spectral measure associated to A, for any 1 € H we get

@A) = [ Sy < s 1 [ dnuy < .
o o(A)

(A) Aea(A)

2Recall that A > 0 if for any o € D (A), {1, A)> > 0 and that A > Bif A— B > 0.



Proceeding analogously we also get

RN 1 inf +
@AY =@ | a0 s w0

Those chains of inequalities imply that 0 < A~ < id.

To prove b consider A > 0; given that A > 0, we have

N|=

B+ Aid > A+ Aid = (A + Aid) "2 (B + Aid) (A + Aid) "2 > id,

where we used the fact that A + Aid > \id and that (-) 2 is continuous and bounded on

[\, +o0) to define (A + Aid) 2.

Using a we then get that

id > [(A+ Xid) "% (B + \id) (4 + Aid) 2|
1
2

N|=

= (A4 Aid)2 (B + Xid) ™' (4 4+ Aid)2.

Multiplying both sides from left and right by (A + )\id)_% we can conclude.

To prove ¢, we first prove (9); we get

+o0 A +o +o
0 ﬁ(l_m)d)\: 0 \ﬂ($+/\)d)\:\/§fo ﬁ(l—i—)\)d)\
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As a consequence we can write for any ¢ € H

Wy = [ e = [ 2 (1= ) a3
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Now, given that N (1 — t%\) < g (1 - t+ﬁAH) = JierlAp integrable in o (A) x

[0,4+00) with the measure given by the product of the spectral measure of A and the
Lebesgue measure, we can exchange the order of the two integrals to get
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Using now b we get that for any ¢ € H
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(W, VAY) = (b, — O ﬁ<1—t(A—|—t1d) 1>dtw>

which allows us to conclude.



Exercise 4

Let H be an Hilbert space. Let A be a linear self-adjoint operator on ‘H with A > 0 and
A > 0. Denote with [-| the operator norm and with [-|,, the norm induced by the inner
product in the Hilbert space H.

a Prove that H(A + )\id)flu < 1/

b Prove that for all ¢ € H,

013, > |44+ xia)™ wHi + 224 + xi)! ¢Hi | (10)
Conclude that HA (A+ Aid)*lH <1

Proof. To prove a recall that we proved in class that if T is a self-adjoint operator and f
is a continuous and bounded function we have | f (T)| < sup¢eq(ry [f (¢)]. Moreover, we
also saw that if A > 0 then o (A) < [0, +0). As a consequence we get
1 1 1

(A+)\id)_1’ < sup < sup —— < —.
H cea(A) ICH Al cejo gy CHA A

To prove b we get that for any ¢ € H

by (A + 2id) 7P A (A + Aid) 1) = (A + Xid) hap, A (A + Xid)THy) = 0.

As a consequence we get that

2 2
HA (A+ \id)™ quH + A2 H(A + Aid)™! wHH -
=, (A+Nid) 7" (A2 + 2?) (A + Aid) M)
<, (A+Nid) 7! (A% + 204 + 22) (A + Xid) "y = [[))3, -

As a consequence we then get HA (A+ Xid)™* ¢HH < |[4], which allows us to conclude

that HA (A+ Aid)‘lH <1.



